¿ô³Ø¤ÎÅÎ4 Âо粤Îɽ¸½¤È¥ä¥ó¥°¿Þ·Á½¸ÃĤβòÀϳØ
¨¡¨¡Á²¶áŪɽ¸½ÏÀ¤Ø¤Î½øÀâ
ƶ ¾´¿Í Ãø¡¿´Ø¸ý¼¡Ïº¡¦À¾»³ µý¡¦»³²¼ Çî ÊÔ
A5Ƚ¡¦¾åÀ½¡¦448ÊÇ¡¦Äê²Á7000±ß+ÀÇ
ɽ¸½ÏÀ¤È³ÎΨÏÀ¤È¤¬½Å¤Ê¤ê¤¢¤¤º®¤¸¤ê¹ç¤¦Á²¶áŪɽ¸½ÏÀ¤ÎÌ¥ÎϤòÄ֤ä¿.
¼ç¤ËÂо粤Îɽ¸½¤òÂêºà¤Ë¤·,¡¡³ÎΨÏÀ¤Îµ»Ë¡¤òÍѤ¤¤Æ²òÀ⤹¤ë.
¤Þ¤¨¤¬¤
¡¡¿ô³Ø¤ÎÅΤËÁ²¶áŪɽ¸½ÏÀ¤È¸Æ¤Ð¤ì¤ë¤è¤¦¤Ë¤Ê¤Ã¤¿¾®·Ê¤¬¤¢¤ë¡¥
ʬÌî¤Ç¸À¤¨¤Ð¡¤É½¸½ÏÀ¤È³ÎΨÏÀ¤È¤¬½Å¤Ê¤ê¤¢¤¤º®¤¸¤ê¤¢¤¦¤È¤³¤í¤Ç¤¢¤ë¡¥
¤³¤³¤Ë¿¾¯¤ÏÄ̤¤´·¤ì¤¿É®¼Ô¤¬É®¼Ô¤Ê¤ê¤Ë´¶ÆÀ¤·¤¿¤³¤ÎÃϤÎÌ¥ÎϤòÄ֤äƤߤ¿¤â¤Î¤¬Ëܽñ¤Ç¤¢¤ë¡¥
¶ñÂÎŪ¤Ë¤Ï¡¤¼ç¤ËÂо粤Îɽ¸½¤òÂêºà¤Ë¤·¡¤³ÎΨÏÀ¤Îµ»Ë¡¤òÍѤ¤¤Æ¶á´ó¤Ã¤¿¤êÎ¥¤ì¤¿¤ê¤·
¤Ê¤¬¤é¡¤¤¤¤í¤¤¤í¤Ê¥·¥ç¥Ã¥È¤òÆϤ±¤è¤¦¤È»×¤¦¡¥
¡¡»öʪ¤ÎÂоÎÀ¤òÏÀ¤¸¤ëºÝ¡¤Ê¸»ú¤ÎÃÖ´¹¤È¤¤¤¦¤Î¤ÏºÇ¤âÁÇËѤÊÁàºî¤Ç¤¢¤í¤¦¡¥
Âо粤Îɽ¸½ÏÀ¤È¤Ï¡¤¤½¤Î¤è¤¦¤ÊÃÖ´¹¤Îº¬ËÜŪ¤Êµ¬Â§¤òʬÎष¡¤ÃÖ´¹¤Ë´Ø¤¹¤ëÊÝ·¿À¤äÉÔÊÑÀ¤òÄ̤·¤Æʪ»ö¤ÎÂоÎÀ¤ÎËܼÁ¤ËÇ÷¤í¤¦¤È¤¤¤¦³ØÌä¤Ç¤¢¤ë¡¥
·²¤Î³µÇ°¤¬³ÎΩ¤¹¤ë¤Ï¤ë¤«°ÊÁ°¤Þ¤Ç´Þ¤á¤ë¤È¤½¤ÎÎò»Ë¤ÏŤ¯¡¤¸½Âå¤Ë»ê¤ë¤Þ¤Ç¿ô¿¤¯¤ÎÈþ¤·¤¤Àºå̤ʷë²Ì¤¬ÆÀ¤é¤ì¤Æ¤¤¤ë¡¥
Ëܽñ¤Ç¤È¤ê°·¤ª¤¦¤È¤¹¤ëÁ²¶áŪɽ¸½ÏÀ¤Ç¤Ï¡¤ÃÖ´¹¤µ¤ì¤ëʸ»ú¤Î¸Ä¿ô¤¬ËÄÂç¤Ê¾ì¹ç¤ò¹Í¤¨¡¤·²¤Î¥µ¥¤¥º¤¬µðÂç¤Ë¤Ê¤Ã¤¿¾õ¶·¤òÁÛÄꤷ¤Æ¡¤É½¸½¤ÎÃæ¤Ë¤É¤Î¤è¤¦¤ÊÅý·×Ū¤Êˡ§¤äÁ²¶áŪ¤Ê¹½Â¤Èþ¤¬É⤫¤Ó¾å¤¬¤ë¤«¤òÌäÂê¤Ë¤¹¤ë¡¥
¤¢¤ëÌ̤Ǥϡ¤¤»¤Ã¤«¤¯ÁȤ߾夬¤Ã¤¿Àºå̤ʹ½Â¤¤ò¤ï¤¶¤ÈÊø¤·¤¿¤ê¤Ü¤«¤·¤¿¤ê¤·¤ÆÂç¤Å¤«¤ß¤Ëª¤¨¤ë¤È¤¤¤¦ºî¶È¤Ç¤â¤¢¤ë¤¬¡¤¤½¤Î¤è¤¦¤Ê°ãÏ´¶¤â¤Þ¤¿¿·Á¯Ì£¤Î¤Ò¤È¤Ä¤È¸À¤¨¤è¤¦¡¥
¤¤¤º¤ì¤Ë¤»¤è¡¤·²¤È¤½¤ÎÁÐÂФò¥»¥Ã¥È¤Ë¤·¤Æ°·¤¦¤¤¤ï¤æ¤ëĴϲòÀϤιͤ¨Êý¤¬´ðÈפˤʤ롥
°ìÊý¤Ç¤Ï¡¤Í¸Â¤Î¤¢¤ë¤¤¤ÏÎ¥»¶Åª¤ÊÂоݤÎÀºÌ©¤Ê¹Í»¡¤òɬÍפȤ¹¤ë¤¿¤á¡¤Áȹ礻ÏÀ¤Î¿§ºÌ¤â¶¯¤¤¡¥
¤½¤·¤Æ°ì´Ó¤·¤Æ³ÎΨÏÀ¤ÎÌäÂê°Õ¼±¤¬Äìή¤Ë¤¢¤ë¡¥
¡¡Young¿Þ·Á¤Ï¿Þ1¤Î¤è¤¦¤ËÈ¢¡Ê¥»¥ë¡Ë¤òÀѤó¤Çɽ¼¨¤µ¤ì¤ë¡¥
È¢¿ôn¤ÎYoung¿Þ·Á¤¬n¼¡Âоη²Sn¤Î´ûÌóɽ¸½¤È¤É¤¦´Ø·¸¤¹¤ë¤«¤ÏËÜʸ¤ò¤ß¤Æ¤¤¤¿¤À¤¯¤³¤È¤Ë¤·¡¤¤³¤³¤Ç¤Ï¡¤²¿¤é¤«¤Î°ÕÌ£¤Ç¥é¥ó¥À¥à¤ËÈ¢¤òÀѤó¤Ç¤¤¤¯¤³¤È¤Ë¤è¤Ã¤ÆÂо粤Îɽ¸½¤Î²¿¤é¤«¤ÎÁ²¶áŪ¤ÊÀ¼Á¤ò´Ñ»¡¤·ÆÀ¤ë¤È¤·¤è¤¦¡¥
Young¿Þ·Á¤Ï¤É¤ó¤É¤óÂ礤¯¤Ê¤ëÌõ¤Ç¤¢¤ë¤¬¡¤º£¡¤È¢¿ôn¤Î¤â¤Î¤ò½Ä²£1¡¿¢ånÇܤ¹¤ë¤È¡¤ÌÌÀѤ¬°ìÄê¤ËÊݤ¿¤ì¡¤n¢ª¡ç¤Ë¤Ä¤ì¤Æ¤¿¤È¤¨¤Ð¿Þ1¤Î¤è¤¦¤ÊÊѲ½¤ÎÍͻҤ¬¸«¤é¤ì¤ë¡¥
¤³¤Î¤È¤¡¤ºÇ±¦¿Þ¤ËÂÀÀþ¤ÇÉÁ¤«¤ì¤Æ¤¤¤ë¶³¦¤Î¤è¤¦¤ÊÉôʬ¡Ê¥×¥í¥Õ¥¡¥¤¥ë¡Ë¤¬¡¤É½¸½¤Î¤¢¤ëÁ²¶áŪ¤ÊÀ¼Á¤òɽ¤¹¤â¤Î¤È¤ß¤Ê¤»¤ë¡¥
º£Å٤ϡ¤Æ±¤¸¤¯²¿¤é¤«¤Î°ÕÌ£¤Ç¥é¥ó¥À¥à¤ËÈ¢¤òÀѤó¤Ç¤¤¤¯¤Î¤Ç¤¢¤ë¤¬¡¤È¢¿ôn¤ÎYoung¿Þ·Á¤Î¹Ô¤äÎó¤ÎŤµ¤¬Á²¶áŪ¤Ën¤Î¥ª¡¼¥À¡¼¤Ë¤Ê¤ë¤è¤¦¤Ê¾õ¶·¤Ë¤·¤Æ¤ß¤ë¡¥
¤½¤¦¤¹¤ë¤È¡¤¿Þ1¤Î¤è¤¦¤ÊÉÁÁü¤Ç¤Ï¤Ê¤¯¡¤¶¯¤¤¤Æ¸À¤¨¤ÐÈó¾ï¤ËÇö¤Ã¤Ú¤é¤¤¿Þ·Á¤Ë¤Ê¤Ã¤Æ¤¤¤Ã¤Æ¡¤¶Ë¸Â¤ÏÁ´ÂÎŪ¤Ê·Á¾õ¤È¤·¤Æ¤Ï¤Ä¤«¤Þ¤é¤Ê¤¤¡¥
¤·¤«¤·¤³¤Î¾ì¹ç¤â¼Â¤Ï¡¤¹Ô¤äÎó¤ÎŤµ¤În¤ËÂФ¹¤ëÈæΨ¤¬É½¸½¤ÎÁ²¶áŪ¤ÊÀ¼Á
¿Þ1¡¡Young¿Þ·Á¤ÎÀ®Ä¹¤È¡Ö¶Ë¸Â¡×
¤òÉ⤫¤Ó¾å¤¬¤é¤»¤ë¡¥
¤É¤Á¤é¤ÎÁ²¶áµóÆ°¤ò°·¤¦¾ì¹ç¤Ç¤â¡¤Ëܽñ¤Î¤Û¤È¤ó¤É¤Îʸ̮¤Ç¤Ï¡¤È¢¤òÀѤàºÝ¤Î¥é¥ó¥À¥à¥Í¥¹¤Ïɽ¸½¤Îʬ´ô§¤ËͳÍ褷¤Æ¤¤¤ë¡¥
¡¡¥¹¥È¡¼¥ê¡¼Å¸³«¤ò¤¢¤ëÄøÅÙÌÀ³Î¤Ë¤¹¤ë¤¿¤á¡¤Ëܽñ¤Ç¤Ï¡¤Âо粤Îɽ¸½¤Ë¤ª¤±¤ë¾åµ2¼ïÎà¤ÎÁ²¶áµóÆ°¤«¤é¤½¤ì¤¾¤ì¤È¤Ã¤¿¼¡¤Î2¤Ä¤ÎÌäÂê¤òºÇ¸å¤Þ¤Ç²ò¤¤¤ë¤È¤¤
¤¦ÌÜŪ°Õ¼±¤òÊݤĤ褦¤Ë¤·¤¿¡§
¡¡ÌäÂê1¡¡Young¿Þ·Á¤ÎPlancherel½¸ÃĤˤª¤±¤ë¶Ë¸Â·Á¾õ¤Î½Ð¸½¤ò³ÎΨÏÀ¤ÎÂç¿ô¤Î¶¯Ë¡Â§¤È¤·¤ÆÄê¼°²½¤·¡¤¾ÚÌÀ¤òÍ¿¤¨¤ë¤³¤È¡¤
¡¡ÌäÂê2¡¡Ìµ¸ÂÂоη²¤Î»Øɸ¤ª¤è¤ÓYoung¥°¥é¥Õ¾å¤Î¶Ë¾®Ä´Ï´ؿô¤ÎʬÎà¤òÍ¿¤¨¡¤Young¥°¥é¥Õ¾å¤Î°ìÈ̤ÎÄ´Ï´ؿô¤ËÂФ¹¤ëĶÂоΤÊSchur´Ø¿ô¤ò³Ë¤Ë¤â¤ÄMartinÀÑʬɽ¼¨¤ò¾ÚÌÀ¤¹¤ë¤³¤È¡¥
¤¿¤À¤·¡¤ÌÜŪÃϤËÆͤ¿Ê¤à¤Î¤Ç¤Ï¤Ê¤¯¡¤´ó¤êÆ»¤ò¤·¤Ê¤¬¤é´ØÏ¢¤¹¤ë¤¤¤í¤¤¤í¤ÊÉ÷·Ê¤ò¾Ò²ð¤·¤Æ¤¤¤¯¡¥
´ó¤êÆ»¤ÎÅÓÃæ¤æ¤¨¡¤³µÇ°¤äÄêÍý¤ÎÄ󼨤ÏÆüì¤Ê¾ì¹ç¤Ë¸ÂÄꤷ¤Æ½Ò¤Ù¤ë¤³¤È¤Ë¤Ê¤ê¤¬¤Á¤Ç¡¤Æ³Æþ¤Î»ÅÊý¤¬·ÏÅýŪ¤Ç¤Ê¤¤¤³¤È¤¬Â¿¤¤¡¥
¡¡Ëܽñ¤òÃø¤¹¤Ë¤¢¤¿¤ê¡¤Í½È÷Ãμ±¤Î¤ê¤Ê¤µ¤Î¤¿¤á¤Ë³ØÉô¾åµéÀ¸¤äÂç³Ø±¡À¸¤Ë·É±ó¤µ¤ì¤ë¤³¤È¤ÏÈò¤±¤¿¤¤¤È»×¤Ã¤¿¡¥
¤¢¤é¤«¤¸¤áɬÍפʤΤϡ¤ÈùÀÑʬ¤ÈÀþ·¿Âå¿ô¤Î¾¡¤Ê£ÁÇ´Ø¿ô¡¤Â¬ÅÙ¤ÈÀÑʬ¡¤µ÷Î¥¤È°ÌÁꡤ¤½¤·¤Æ·²¤Ë´Ø¤¹¤ë´ðÁÃŪ»ö¹à¤Ç¤¢¤ë¡¥
ÀìÌçʬÌî
¤ÎÊý¸þÀ¤¬¤Þ¤À¸Ç¤Þ¤Ã¤Æ¤¤¤Ê¤¤Êý¡¹¤Î¤³¤È¤ò¹Íθ¤·¡¤Â¿¾¯ÀìÌçŪ¤È»×¤¨¤ë¤³¤È¤Ï¤Ê¤ë¤Ù¤¯ÀâÌÀ¤ò²Ã¤¨¤¿¤ê¡¤¤«¤Ê¤êÁ̤äƾÚÌÀ¤ò¤Ä¤±¤¿¤ê¤·¤¿¡¥
´ûÃΤξì¹ç¤Ï¤É¤ó¤É¤óÈô¤Ð¤µ¤ì¤ë¤È¤è¤¤¡¥
¤½¤¦¤Ï¸À¤Ã¤Æ¤â¡¤¿ô³Ø²Ê¤Î´ðÁòÝÄø¤Ç¶µ°é¤µ¤ì¤ë¤è¤¦¤Ê¿ô³ØŪ»×¹ÍË¡¤Ø¤Î¤Ê¤ì¤Ï´üÂÔ¤·¤¿¤¤¡¥
¡¡Âо粤Îɽ¸½¤ò°·¤¦¤Î¤Ë¡¤¾å¤Ëµó¤²¤¿Â¬ÅÙ¤ÈÀÑʬ¤¬Íפë¤Î¤ò°Õ³°¤Ë´¶¤¸¤é¤ì¤ë¤«¤â¤·¤ì¤Ê¤¤¡¥
¤·¤«¤·¤Ê¤¬¤é¡¤Í¸Â¤È̵¸Â¤ò¹Ô¤Í褷¤Ä¤ÄÁ²¶áÍýÏÀ¤òŸ³«¤¹¤ëËܽñ¤ÎΩ¾ì¤Ç¤Ï¡¤±Æ¤Î¼çÌò¤Ï¬Å٤Ǥ¢¤ë¤È¸À¤Ã¤Æ¤è¤¤¡¥
¶Ë¸ÂÉÁÁü¤ò¤É¤Î¤è¤¦¤ÊÏÈÁȤÎÃæ¤Çª¤¨¤ë¤«¤ò»×°Æ¤¹¤ë¤È¡¤Â¬Å٤Ȥ¤¤¦¤Î¤Ï¶Ë¸ÂÁàºî¤Ë´Ø¤·¤Æ¤Û¤É¤è¤¯½ÀÆð¤Ç¤«¤Äľ´ÑŪ¤Ê¥¤¥á¡¼¥¸¤â»ý¤Á¤ä¤¹¤¤³µÇ°¤Ç¤¢¤ëÌ̤¬¤¢¤ê¡¤¤ï¤ì¤ï¤ì¤Ë¤È¤Ã¤Æ¹¥ÅÔ¹ç¤Ç¤¢¤ë¡¥
¤Þ¤¿¡¤Young¥°¥é¥Õ¤Î·ÐÏ©¶õ´Ö¾å¤Î¬ÅÙ¤ò°Õ¼±¤¹¤ë¤³¤È¤¬¡¤Ëܽñ¤Ë¤ª¤±¤ë³ÎΨÏÀŪÊýË¡¤ÎÍפǤ⤢¤ë¡¥
¡¡Ëܽñ¤Î¹½À®¤Ï°Ê²¼¤Î¤È¤ª¤ê¤Ç¤¢¤ë¡¥
1¾Ï¤Ç͸·²¤Îɽ¸½¤Î°ìÈÌÏÀ¤òFourier²òÀϤλëÅÀ¤«¤é¤¶¤Ã¤È¸«ÅϤ¹¡¥
2¾Ï¤Ç¡¤Okounkov-Vershik¤ÎÊýË¡¤Ë¤·¤¿¤¬¤Ã¤ÆÂоη²¤Î´ûÌóɽ¸½¤ÎYoung¿Þ·Á¤òÍѤ¤¤¿Ê¬Îà¤Èʬ´ô§¤Î¾Ò²ð¤ò¹Ô¤¦¡¥
¤Ï¤¸¤á¤«¤éÁ°Ì̤˸½¤ì¤ëYoung´ðÄ줬¼«Á³¤Ë·ÐÏ©¶õ´Ö¾å¤Î¬Å٤ˤĤʤ¬¤Ã¤Æ¤¤¤¯¤È¤³¤í¤¬°Ê¸å¤Îή¤ì¤ËŬ¹ç¤¹¤ë¤Î¤Ç¡¤¤³¤ÎƳÆþË¡¤òºÎ¤Ã¤¿¡¥
3¾Ï¤Ï¡¤Schur-WeylÁÐÂÐÀ¤ÈÂоη²¤Î»Øɸ¤ËÂФ¹¤ëFrobenius¤Î¸ø¼°¤Î¾ÚÌÀ¤Ë¤¢¤Æ¤é¤ì¤ë¡¥
Ëܽñ¤Ë½Ò¤Ù¤¿¤è¤¦¤Ê»ÅÊý¤Ç¤Ê¤¯¤Æ¤â¡¤²¿¤é¤«¤Îɸ½àŪ¤ÊÊýË¡¤ÇÂоη²¤Î´ûÌóɽ¸½¤ÎYoung¿Þ·Á¤Ë¤è¤ë¥é¥Ù¥ë¤Å¤±¤ò³Ø¤ó¤À¤³¤È¤¬¤¢¤ê¡¤Frobenius¤Î»Øɸ¸ø¼°¤òÃΤäƤ¤¤ë¿Í¤Ï¡¤3¾Ï¤Þ¤Ç¤òÆɤßÈô¤Ð¤·¤ÆÂç¾æÉפǤ¢¤í¤¦¡¥
4¾Ï¤Ç¤Ï³ÎΨÏÀ¤Î½àÈ÷Ū¤Ê»ö¹à¤Ë¤Ä¤¤¤Æ½Ò¤Ù¤ë¡¥
Æäˡ¤¾Ü¤·¤¤ÀâÌÀ¤ò¼ýÏ¿¤·¤¿Ëܤ¬°Æ³°¾¯¤Ê¤¤¤È»×¤ï¤ì¤ë¥¥å¥à¥é¥ó¥È¤ÎÁȹ礻ÏÀŪÀ¼Á¤ä¥°¥é¥Õ¾å¤ÎMarkovÏ¢º¿¤Ë´ØÏ¢¤¹¤ëMartin¶³¦¤Ë¤Ä¤¤¤Æ¤â¡¤ÀâÌÀ¤ò²Ã¤¨¤¿¡¥
¤³¤³¤â´ûÃΤξì¹ç¤ÏÈô¤Ð¤µ¤ì¤ë¤È¤è¤¤¡¥
¤³¤Î1¾Ï¤«¤é4¾Ï¤Þ¤Ç¤¬ÂèµÉô¤Ç¤¢¤ë¡¥
¡¡5¾Ï¤«¤é7¾Ï¤Þ¤Ç¤ÎÂè¶Éô¤Ï¡¤¾åµ¤ÎÌäÂê1¤ò¼çÂê¤Ë¿ø¤¨¤ë¡¥
5¾Ï¤Ç¡¤°Ê¸å¼çÍפÊÌò³ä¤ò²Ì¤¿¤¹Young¥°¥é¥Õ¾å¤ÎÄ´Ï´ؿô¤ä·ÐÏ©¶õ´Ö¾å¤Î¬ÅÙ¤òƳÆþ¤¹¤ë¡¥
¤½¤ì¤ËÀèΩ¤Á¡¤5.1Àá¤Ç¥¦¥©¡¼¥ß¥ó¥°¥¢¥Ã¥×¤ò·ó¤Í¤ÆPascal»°³Ñ·Á¾å¤Ç´ö¤Ä¤«¤ÎÏÃÂê¤òͽ½¬¤·¤Æ¤ª¤¯¡¥
6¾Ï¤Î¼çÂê¤Ï¡¤Kerov-Olshanski¤Ë¤è¤Ã¤ÆƳÆþ¤µ¤ì¤¿Young¿Þ·Á¤Î¤¤¤í¤¤¤í¤ÊºÂɸ¤Ë´Ø¤¹¤ë¿¹à¼°´Ø¿ô¤Î¤Ê¤¹Âå¿ô¤Î¹½Â¤¤òÄ´¤Ù¤ë¤³¤È¤Ç¤¢¤ë¡¥
Ëܽñ¤ÇºÎ¤Ã¤¿Á²¶áŪ¤ÊÊýË¡¤Î»ÙÃì¤òÍ¿¤¨¤ëµ»½ÑŪ¤Ë½ÅÍפʾϤǤ¢¤ë¡¥
ÌäÂê1¤Î²òÅú¤Ï7¾Ï¤ÇÍ¿¤¨¤é¤ì¤ë¡¥
¡¡8¾Ï°Ê¹ß¤ÎÂè·Éô¤Ç¤Ï¡¤¾åµ¤ÎÌäÂê2¤òǰƬ¤ËÃÖ¤¯¡¥
8¾Ï¤Ï̵¸ÂÂо粤Îɽ¸½¤Ë´Ø¤¹¤ë´ðËÜ»ö¹à¤ÎÀâÌÀ¤Ë¤¢¤Æ¤é¤ì¤ë¡¥
9¾Ï¤ÇÌäÂê2¤Î²òÅú¤òÍ¿¤¨¤ë¡¥
Young¥°¥é¥Õ¾å¤ÎÄ´Ï´ؿô¡¤·ÐÏ©¶õ´Ö¾å¤Î¬ÅÙ¤ÎξÌ̤«¤é¹Í»¡¤ò¿Ê¤á¤ë¡¥
10¾Ï¤Ï2¡¤3¤ÎȯŸŪ¤ÊÏÃÂê¤Î¾Ò²ð¤ò´Þ¤à¡¥
ËÜʸÃæ¤Ç¤Ï¾ÚÌÀ¤òÈô¤Ð¤·¤¿·ë²Ì¤Ë¤Ä¤¤¤Æ¤«¤Ê¤ê¤ÎÄøÅ٤ޤǼ«¸Ê½¼ÂŪ¤ÊÀâÌÀ¤òÊ䤦¤¿¤á¡¤ÉÕÏ¿¤Î¾Ï¤òÀߤ±¤ë¡¥
¡¡Âо粤ÎÁ²¶áŪɽ¸½ÏÀ¤Ë´Ø¤ï¤ëÆâÍƤò¤â¤Ã¤¿Ì¾Ãø¤È¤·¤Æ¡¤É®¼Ô¤Ï¼¡¤Î2ºý¤òÆɼԤˤâÁ¦¤á¤¿¤¤¤È»×¤¦¡§
¡¡¡üP. Diaconis, Group Representations in Probability and Statistics.
¡¡¡üS. V. Kerov, Asymptotic Representation Theory of the Symmetric Group
¡¡¡¡¡¡and Its Applications in Analysis.
¡Ê½ÐÈǥǡ¼¥¿¤Ï»²¹Íʸ¸¥¤ÎÊǤΡÎ9¡Ï¡¤¡Î35¡Ï¤ò»²¾È¡Ë¡¥
¼ÂºÝ¤Î¤È¤³¤í¡¤¤³¤ì¤é¤ÎËܤؤÎÆ»°ÆÆâ¤ÎÌò³ä¤ò²Ì¤¿¤»¤ë¤è¤¦¤Ë¤È¤¤¤¦¤Î¤â¡¤Ëܽñ¤òÃø¤¹ºÇ½é¤ÎÆ°µ¡¤Ë¤¢¤Ã¤¿¡¥
¤¢¤¨¤ÆÂÐÈ椷¤Æ¸À¤¨¤Ð¡¤Diaconis¤ÎËܤǤϷ²¤Î¾å¤Î¿ìÊ⤬¼çÌò¤Ç¤¢¤ê¡¤Kerov¤ÎËܤϷ²¤ÎÁÐÂФξå¤Î¿ìÊâ¤ò´ðÄ´¤È¤·¤Æ¤¤¤ë¡¥
¤·¤«¤·¡¤É®¤ò¿Ê¤á»Ï¤á¤Æ¤Û¤É¤Ê¤¯¡¤Î¾Êý¤òÌܻؤ¹¤Î¤Ï̵Íý¤À¤È»×¤Ã¤ÆÃÇÇ°¤·¤¿¡¥
·ë²Ì¡¤DiaconisµÖ¤Ï±ó´¬¤¤Ëį¤á¤ë¤À¤±¤Ë¤·¡¤KerovÎÓ¤ÎÊý¤Ë¤Ï¼ÂºÝ¤Ëʬ¤±Æþ¤Ã¤Æ¤ß¤ë¤³¤È¤Ë¤·¤¿¡¥
¡¡(°Ê²¼Î¬Í)
¡¡2016ǯÅß¡¡»¥Ëڤˤơ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Æ¶¡¡¾´¿Í